Soil formate regulates the fungal nitrous oxide emission pathway.
نویسندگان
چکیده
Fungal activity is a major driver in the global nitrogen cycle, and mounting evidence suggests that fungal denitrification activity contributes significantly to soil emissions of the greenhouse gas nitrous oxide (N(2)O). The metabolic pathway and oxygen requirement for fungal denitrification are different from those for bacterial denitrification. We hypothesized that the soil N(2)O emission from fungi is formate and O(2) dependent and that land use and landforms could influence the proportion of N(2)O coming from fungi. Using substrate-induced respiration inhibition under anaerobic and aerobic conditions in combination with (15)N gas analysis, we found that formate and hypoxia (versus anaerobiosis) were essential for the fungal reduction of (15)N-labeled nitrate to (15)N(2)O. As much as 65% of soil-emitted N(2)O was attributable to fungi; however, this was found only in soils from water-accumulating landforms. From these results, we hypothesize that plant root exudates could affect N(2)O production from fungi via the proposed formate-dependent pathway.
منابع مشابه
Short Communication Emissions of nitrous oxide from runoff-irrigated and rainfed soils in semiarid north-west Kenya
Nitrous oxide is an important greenhouse gas and contributes to stratospheric ozone destruction, but still little is known about emissions of this trace gas from soils in semiarid environments and how emissions are affected by irrigation. Therefore, nitrous oxide emissions from a runoff-irrigated and rainfed endosodi-calcaric Fluvisol in the semiarid northwest of Kenya were measured using the c...
متن کاملBiological sources and sinks of nitrous oxide and strategies to mitigate emissions.
Nitrous oxide (N(2)O) is a powerful atmospheric greenhouse gas and cause of ozone layer depletion. Global emissions continue to rise. More than two-thirds of these emissions arise from bacterial and fungal denitrification and nitrification processes in soils, largely as a result of the application of nitrogenous fertilizers. This article summarizes the outcomes of an interdisciplinary meeting, ...
متن کاملNitrous oxide emission reduction in temperate biochar-amended soils
Introduction Conclusions References
متن کاملDetection and Diversity of Fungal Nitric Oxide Reductase Genes (p450nor) in Agricultural Soils.
UNLABELLED Members of the Fungi convert nitrate (NO3 (-)) and nitrite (NO2 (-)) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations, and complementary molecular approaches to assign denitrification potential to fungi a...
متن کاملThe contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860
Atmospheric nitrous oxide concentrations have been increasing since the industrial revolution and currently account for 6% of total anthropogenic radiative forcing. Microbial production in soils is the dominant nitrous oxide source; this has increased with increasing use of nitrogen fertilizers. However, fertilizer use alone cannot account for the historical trends of atmospheric concentrations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 74 21 شماره
صفحات -
تاریخ انتشار 2008